The kth upper generalized exponent set for the class of non-symmetric primitive matrices
نویسندگان
چکیده
Let QBn be the set of n x n (n > 8) non-symmetric primitive matrices with at least one pair of nonzero symmetric entries. For each positive integer 2 ::; k ::; n 2, we give the kth upper generalized exponent set for Q Bn by using a graph theoretical method.
منابع مشابه
The kth upper generalized exponent set for primitive matrices
Let Pn,d be the set of n x n non-symmetric primitive matrices with exactly d nonzero diagonal entries. For each positive integer 2 ~ k ~ n -1, we determine the kth upper generalized exponent set for Pn,d and characterize the extremal matrices by using a graph theoretical method.
متن کاملMatrices with Maximum Upper Multiexponents in the Class of Primitive, Nearly Reducible Matrices
B. Liu has recently obtained the maximum value for the kth upper multiexponents of primitive, nearly reducible matrices of order n with 1 ≤ k ≤ n. In this paper primitive, nearly reducible matrices whose kth upper multiexponents attain the maximum value are completely characterized.
متن کاملJoint and Generalized Spectral Radius of Upper Triangular Matrices with Entries in a Unital Banach Algebra
In this paper, we discuss some properties of joint spectral {radius(jsr)} and generalized spectral radius(gsr) for a finite set of upper triangular matrices with entries in a Banach algebra and represent relation between geometric and joint/generalized spectral radius. Some of these are in scalar matrices, but some are different. For example for a bounded set of scalar matrices,$Sigma$, $r_*...
متن کاملThe exponential functions of central-symmetric $X$-form matrices
It is well known that the matrix exponential function has practical applications in engineering and applied sciences. In this paper, we present some new explicit identities to the exponential functions of a special class of matrices that are known as central-symmetric $X$-form. For instance, $e^{mathbf{A}t}$, $t^{mathbf{A}}$ and $a^{mathbf{A}t}$ will be evaluated by the new formulas in this par...
متن کاملGeneralized matrix functions, determinant and permanent
In this paper, using permutation matrices or symmetric matrices, necessary and sufficient conditions are given for a generalized matrix function to be the determinant or the permanent. We prove that a generalized matrix function is the determinant or the permanent if and only if it preserves the product of symmetric permutation matrices. Also we show that a generalized matrix function is the de...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Australasian J. Combinatorics
دوره 19 شماره
صفحات -
تاریخ انتشار 1999